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Abstract. This paper communicates a novel method of Wiener filtering signals from scientific
instruments to reduce their noise content. The main prerequisite for the applicability of this
technique is that the pure (i.e. noiseless) signal is reproducible, a condition that is satisfied by
a wide range of experimental measurements. The benefits of this Wiener filter design approach are
its simplicity, generality and practicality. In particular, signal-dependent or multiplicative noise
are accommodated without complication. The non-parametric filter does not require models of
pure signal or noise statistics, and is exactly optimal for the observed (i.e. noisy) signal ensemble.
Implementation of this Wiener filter only requires measurement of observed signal correlation
functions. After deriving the classical stationary signal Wiener filter, the analysis is extended to
derive the reproducible stationary pure signal Wiener filter. A distinction is made between non-
adaptive Wiener filters derived from correlations computed as ensemble averages, and adaptive
Wiener filters derived from correlations computed as time averages. The analysis is extended again
to encapsulate non-stationary signal ensembles and further extended to synthesize Wiener filters
based on statistically good observed signal correlation estimates for arbitrarily many pure signal
reproductions.

1. Introduction

Measurements made using scientific instruments are always afflicted by ‘noise’, by which
we mean any signal that is not experimentally reproducible and that we cannot ascribe to a
specific physical mechanism. Experimenters and instrument designers often take deliberate
action to suppress noise. There are three distinct approaches to achieving this. One is to
physically reduce the amount of noise present by judiciously designing the experimental
apparatus (e.g. cooling and shielding of critical electronic components). Another is to acquire
measurements in a noise insensitive manner (e.g. modulating inputs, and detecting outputs
using lock-in amplifiers). The third noise reduction technique is to statistically analyse the
direct experimental results to better infer their underlying physical information content. We
address the last method here.

Specifically, we consider measurements that take the form of an observed quantity
depending on a second controlled quantity, the instrument being such that the controlled
quantity is caused to vary over a substantial domain. The observed quantity is
assumed to be a single-valued function of the controlled quantity (e.g. no hysteresis).
Examples of controlled/observed quantities are wavelength/intensity (light spectrometers),
energy/counts (electron spectrometers), angle/intensity (telescopes), time/intensity (time-
resolved reflectometers), mass/counts (mass spectrometers) and position/height (scanning

† E-mail address:robert.caprari@dsto.defence.gov.au

0305-4470/99/173075+20$19.50 © 1999 IOP Publishing Ltd 3075



3076 R S Caprari

tunnelling microscopes). In this paper, the controlled quantity is generically denoted ‘time’
and the variation in time of the observed quantity is the observed ‘signal’.

We assume that the controlled quantity is devoid of any experimental error (systematic or
random) and that the observed quantity is subject to random error, but not systematic error. The
importance of this assumption is that there is no need for deconvolution along with the noise
reduction (Wertheim [1] reviews deconvolution of experimental measurements), although a
generalization of our approach accomplishes both [2, section 13.3].

We propose a signal processing approach to noise suppression, which entails analysing a
measured signal in a way that estimates the noise-free signal value at a particular time instant
from the noisy signal values in a time interval, possibly with the assistance of prior knowledge
of the measurement process. Within this filtering model a statistically optimal linear operator
for reducing noise on signals is the classicalWiener filter, which has its roots in statistical
communication theory, but also has a history of use in experimental data analysis. Examples
of the use of Wiener filters for experimental signal noise reduction include spectroscopy
[3–6], electron microscopy [7, 8], diffraction [9], scanning tunnelling microscopy [10–13],
physiological imaging [14–17], film photography [18] and astronomical imaging [19].

The following presentation pertains to the classical Wiener filter, but from a quite novel
perspective that leads to a simple, general and practical Wiener filter algorithm for experiments
whose noise-free output signals (i.e. pure signals) are reproducible. When we refer to
‘reproducible’ pure signals in this paper we mean that any given observation of the pure
signal can be invoked at least twice, but each time degraded by an observation from a different
noise ensemble, with all noise ensembles having the same statistics. In essence, reproducible
pure signals result from repeated noisy experimental measurements of the same physical
phenomenon. In tune with reality, noise is not considered to be reproducible and consequently
neither is the observed signal.

Our Wiener filter methodology has several attractive features not usually associated with
Wiener filters. First, the filter function is completely and exactly determined only from signals
observed during the normal course of experimentation. There is no need for a separate noise
measurement experiment, which may not even be possible. Second, the filter function is
automatically optimized for the actual pure signal and noise statistics encountered in practice,
and not just some hypothesized parametric model for the pure signal or noise statistics. Third,
this Wiener filter algorithm is inherently applicable to signal-dependent or multiplicative noise,
without extra complication beyond the additive, signal-independent noise case. The only
prerequisite for these desirable features is that the pure signal output of the scientific instrument
be reproducible at least once beyond its original occurrence.

The simplicity of this Wiener filtering approach is apparent in all circumstances under
which it is applicable. Its generality is best appreciated in those circumstances that usually
make Wiener filtering problematic, that is, signal-dependent or multiplicative noise. Because
these types of noise cannot be observed in isolation from the pure signal, traditional approaches
to Wiener filter design tend to hypothesize a parametric model of signal statistics, so that the
derived filter can only be approximately optimal. In contrast, our Wiener filter automatically
yields the exact filter function (assuming that experimental estimates of signal statistics
are exact), without the need for deliberate action to accommodate the particular kind of
noise. Practical examples of signal-dependent or multiplicative noise includespeckle[20–22]
(interference of scattered coherent illumination) andshot, Poissonor photonnoise [23–25]
(random arrival times of particles).

The layout of the paper is as follows. We introduce our notation and method of analysis
in section 2 by deriving the general stationary signal Wiener filter. The analysis is extended to
the special case of stationary reproducible pure signals in section 3, where the central result is
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derived. Section 4 presents a discussion of two alternative classes of Wiener filters that may
be derived from this analysis depending on whether signal statistics (specifically correlations)
are computed by ensemble or time averages—ensemble averages yield Wiener filters that are
non-adaptive with respect to individual pure signal and noise realizations, and time averages
yield adaptive Wiener filters. In section 5 the analysis is extended again to make it applicable
to a pertinent class of non-stationary signals. A further extension of the analysis is presented in
section 6, which solves the practically important problem of constructing Wiener filters whose
filter function is computed from statistically good observed signal correlation estimates for
arbitrarily many pure signal reproductions.

2. General discrete time Wiener filter

To familiarize ourselves with the type of analysis needed to develop the specialized Wiener filter
for reproducible pure signals, let us start by developing the general discrete time Wiener filter.
The theoretical foundations of our analysis are described in texts such as that of Papoulis [26],
and the general discrete time Wiener filter is examined by Haykin [27].

Statistical signal analysis theory in general, and Wiener filter theory in particular, are
formulated in the context of ensembles of all possible signals of a given class, which
are formally represented by stochastic processes. Even if in practice it transpires that a
deterministic signal is to be filtered, the deterministic signal is formally treated as a single
realization of a notional stochastic process, as described in section 4. Therefore, whether one
or many members of an ensemble of experimental measurements is available, it is always
appropriate to represent signals by stochastic processes and our analysis is undertaken on this
basis.

Consider the discrete time stochastic processes:

x(ξ, i) ≡ observed signal

s(ξ, i) ≡ pure signal

n(ξ, i) ≡ noise signal

y(ξ, i) ≡ filtered signal

wherei is the integer time index andξ is the generally continuous sample space variable.
The sample space is the totality of different possible signal functions in the ensemble. Our
convention is to denote random variables and stochastic processes by bold symbols. The
sample space argumentξ will usually be omitted, in which case it will be implied. Sometimes
the time indexi will also be omitted, in which case it will be implied that the stochastic process
variable alone (e.g.x) refers to all random variablesx(i) at all time indicesi.

Our analysis certainly will be valid foradditive noise, that is,

x(i) = s(i) +n(i). (1)

By making the analysis sufficiently general, it will also be valid formultiplicative noise.
Without loss of generality, let the multiplicative noise have unit mean, in which case

x(i) = (1 +n′(i))s(i) (2)

where, on introduction of the notation〈·〉 for expectation or ensemble average,

〈n′(i)〉 = 0. (3)

Then

x(i) = s(i) +n′(i)s(i) (4)
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and defining the new noise stochastic process

n(i) ≡ n′(i)s(i) (5)

we substitute (5) into (4) to obtain (1).
Consequently, the basic relationship (1) applies whether the noise is additive or

multiplicative, and we shall proceed on the basis of relation (1). The only possible complication
arising from multiplicative noise is that (5) implies that the equivalent additive noisen in (1)
must be dependent on the pure signals, which need not be the case for inherently additive noise.
Our analysis will be conducted to be inclusive of realistic signal-dependent noise processes,
and we shall see that the reproducible pure signal Wiener filter is inherently applicable to such
signal-dependent noise without any special precautions. So the Wiener filter designed on the
basis of additive noise models is also valid for multiplicative noise models. Most physical noise
processes are intrinsically additive in nature, but photographic film grain noise and speckle
are two examples of noise influences that are often modelled at least in part as multiplicative
noise. The design of Wiener filters for multiplicative noise has received some attention [28].

To proceed, we make two very reasonable assumptions about pure signals and noise:

Assumption A.n is zero mean:

〈n(i)〉 = 0 ∀ i.
For the multiplicative noise model, if the zero meann′ is uncorrelated with, but possibly
dependent on, the pure signals, then the effective additive noisen (5) is zero mean.

Assumption B.s andn are mutually uncorrelated, but possibly dependent:

〈s(i)n(j)〉 = 〈s(i)〉〈n(j)〉 = 0 ∀ i, j.
For the multiplicative noise model, if the zero meann′ is independent ofs, then the effective
additive noisen (5) is dependent on, but uncorrelated with, the pure signals.

For the multiplicative noise model to satisfy both assumptions A and B, the multiplicative
noise must be independent of the pure signal.

The conventional Wiener filter is time invariant and linear, and we will also impose upon it
a finite impulse response (we shall often refer to the impulse response as the ‘filter function’).
That is, the discrete time Wiener filter function has the finite domain (or ‘region of support’)
m ∈ [−M,M], within which the filter elements arefm. The linear Wiener filter operates on
x to yieldy, as

y(i) =
M∑

m=−M
fmx(i +m). (6)

Time invariance of the filter is exhibited in the independence of filter elementsfm on time index
i. The Wiener filter operation can be enhanced from the bare convolution of (6) to construct a
‘variationally optimal’ Wiener filter [29].

For the present assume that both the pure signal and noise are stationary stochastic
processes, in which case the observed and filtered signals are also stationary. The stationarity
assumption will be relaxed in section 5. Ify is to estimates, then the instantaneous square
error is the stochastic process

ε2(i) ≡ (y(i)− s(i))2 (7)

and the mean square error is the deterministic number

〈ε2〉 ≡ 〈(y(i)− s(i))2〉. (8)
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〈ε2〉 is independent of time indexi by virtue of the stationarity of signals. Substituting (6) into
(8) explicitly shows the dependence of the mean-square error on the filter elements:

〈ε2〉(fm) ≡
〈( M∑

m=−M
fmx(i +m)− s(i)

)2〉
. (9)

The Wiener filter is the linear (time invariant) minimum mean-square error filter, so its
filter functionfm is chosen so that the gradient of〈ε2〉(fm) vanishes, that is,

∂〈ε2〉
∂fm

= 0 m ∈ [−M,M]. (10)

Equation (10) expands into an inhomogeneous system of linear equations, the general discrete
timeWiener–Hopfequation:

M∑
n=−M
〈x(i +m)x(i + n)〉fn = 〈s(i)s(i +m)〉 m ∈ [−M,M]. (11)

Apart from the most pathological and unrealistic of cases, the matrix withmnth element
being 〈x(i + m)x(i + n)〉 is positive definite, hence non-singular, so the Wiener–Hopf
equation (11) has a unique solution for the filter function.〈ε2〉(fm) (9) is a quadratic in the filter
elements that is bounded from below by zero, but is not bounded from above; consequently its
unique stationary point must be a global minimum, as desired.

Notice that the general Wiener–Hopf equation (11) cannot be solved explicitly without
somea priori information, because it makes reference tos, which is not necessarily observable
(if it were conveniently observable, there probably would be little need for a Wiener filter to
estimate it!). It is this need to somehow estimate the autocorrelation of the pure signal when
the pure signal is not directly observable that has received most attention in the diversity of
design approaches to Wiener filtering. Note that the problem may be equivalently thought
of as one of estimating the unobserved noise autocorrelation, since solution of this latter
problem together with measurement of the observed signal autocorrelation yields the pure
signal autocorrelation. Our solution to this problem in the case of reproducible pure signals
will be revealed in section 3.

Introducing conventional definitions of pure signal and noise correlation functions
(whenever we refer to a ‘correlation function’, it is implied that we are referring to an
autocorrelation function, unless otherwise stated)

Rss(m) ≡ 〈s(i)s(i +m)〉 (12)

Rnn(m) ≡ 〈n(i)n(i +m)〉 (13)

we may also define the observed signal correlation function and by appealing to assumptions A
and B derive the following relations:

Rxx(m− n) ≡ 〈x(i +m)x(i + n)〉
= Rss(m− n) +Rnn(m− n). (14)

Stationarity of signals ensures that correlations are independent of time offseti.
Substituting (12) and (14) into (11) yields the simplified Wiener–Hopf equation:

M∑
n=−M

Rxx(m− n)fn = Rss(m) m ∈ [−M,M]. (15)

Correlation functions (12)–(14) have even parity,

Rss(−m) = Rss(m)
Rnn(−m) = Rnn(m) ∀m. (16)

Rxx(−m) = Rxx(m)
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Of necessity, this symmetry is also a property of the filter function,

f−n = fn n ∈ [−M,M] (17)

thus showing that the Wiener–Hopf equations (15) have considerable redundancy. Removing
this redundancy converts the system of(2M+1) linear equations in(2M+1) variables (15) into
a formally equivalent, but computationally more efficient, system of(M + 1) linear equations
in (M + 1) variables:

Rxx(m)f0 +
M∑
n=1

(Rxx(m− n) +Rxx(m + n))fn = Rss(m) m ∈ [0,M]. (18)

Substituting the solution of the Wiener–Hopf equation (15) into the definition of the mean-
square error (9) yields the minimum mean-square error as

〈ε2〉min =
M∑

m=−M
Rnn(m)fm. (19)

Note that for filter elements that are not the solution of the Wiener–Hopf equation, (19) does
not give the mean-square error (9), so (19) does not have universal applicability beyond the
context in which it is presented here.

If the filter region of support is unbounded (i.e.M → ∞), then there are no circular
convolution problems in Fourier transforming the Wiener–Hopf equation and the frequency
domain filter function (also called the filter ‘transfer function’) is directly analogous to that for
continuous time Wiener filters:

Fk ≡ Fourier transform offn
= Sss(k)/Sxx(k)
= Sss(k)/(Sss(k) + Snn(k)). (20)

Functions of the formS(k) in (20) are power spectra, which are Fourier transforms of the
corresponding correlation functionsR(n). Some universal relations between spectra and
correlations have been analysed by Caprari [30]. Equation (20) is the most familiar form of the
Wiener filter, but it is valid only for an unbounded filter region of support (this assumption is
usually implied, rather than explicitly stated). We do not use (20) in our analysis, because
we impose bounds on the filter region of support and notionally solve the Wiener–Hopf
equation (18) directly in the time domain by matrix algebra. This policy is not only a matter of
choice, but, as we shall see in section 5, is mandatory for designing Wiener filters for the non-
stationary signal ensembles frequently encountered in experimentation. If the filter bounded
region of support is much longer than the signal correlation times, imposition of bounds has an
insignificant effect on the Wiener filter function and the direct solution of (18) gives essentially
the time domain version of (20).

3. Reproducible pure signal Wiener filter

The Wiener filter derived in section 2 is quite general for stationary signals, since assumptions A
and B are quite mild. However, we have already alluded to a fundamental problem in its
application to practical situations: the Wiener–Hopf equation (15) makes reference to the
statistics of the unobservable pure signals through the correlation functionRss(m). It may be
possible to specifyRss by hypothesizing an analytic form based on defensible reasoning and
estimating the values of any free parameters from the observed signalx. It may be possible,
with the expenditure of considerable time and effort, to actually observe sufficient samples of
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the pure signals to estimateRss with reasonable confidence. It may be possible to indirectly
measureRss from separate observations ofx andn, butn is not separately observable for
signal-dependent or multiplicative noise. None of these avenues may exist, and even if they
do, the accuracy achieved in practice may not be satisfactory or the required effort may be
excessive.

In this section we shall present an exact and simple solution to the problem of Wiener–Hopf
equation specification for the special case of reproducible pure signals. Other research with a
similar approach, although very different detail, is that of Galatsanos and Chin [31], in which
they derive Wiener filters for pure signals that are multiply realizable as outputs of multiple
linear systems, where distinct linear systems have different transfer functions; and Viberg
et al [32] carry out parameter estimation for similar types of imperfectly reproducible pure
signals. The essential distinction between imperfect reproducibility and noise is that the former
pure signal perturbation is deterministic and the latter stochastic. Unlike noise, imperfect
reproducibility of the pure signal destroys the simplicity and elegance of the following analysis,
so it will not be admitted.

In most types of scientific instrumentation, the pure signal may be reproduced by repeating
the measurement on the same sample, under the same conditions, in which case any discrepancy
between the two measurements is attributable to noise, which is not reproducible. The
truth of this assertion follows directly from the tenet of experimental reproducibility that
is one of the pillars of the scientific method. Exceptions to this rule include instruments
in which the sample is destroyed by the measurement process (e.g. some modes of electron
microscopy on biological specimens, mass spectrometry on trace samples), measurements on
rare and transient natural phenomena (e.g. supernovas, gravitational waves, earthquakes) and
instruments that take a long time to acquire their measurement (e.g. coincidence spectrometers
[33]). However, for the preponderance of circumstances the following assumption is valid for
scientific instrumentation:

Assumption C. The pure signal is reproducible at least once, in addition to its original
occurrence. This is formally accommodated by introducing two noise stochastic processes
n0 andn1, with the same statistics asn, thus yielding in place ofx the two stochastic
processes

x0 ≡ s +n0 x1 ≡ s +n1.

x0(ξ, ·) andx1(ξ, ·) are two observed signals for the same state of a system (‘state’, as
specified by a specific value ofξ , is defined by the specimen being probed and the properties
of the probing instrument), being the state that produces the pure signal outputs(ξ, ·).

Assumption C prompts a further reasonable assumption about noise signals:

Assumption D.Noise signalsn0 andn1 accompanying different occurrences of the same pure
signals are mutually uncorrelated, but possibly dependent:

〈n0(i)n1(j)〉 = 〈n0(i)〉〈n1(j)〉 = 0 ∀ i, j.
For the multiplicative noise model (2), if the zero meann′0 andn′1 are independent ofs and
mutually uncorrelated (maybe dependent), then the effective additive noise signalsn0 and
n1 (5) are mutually uncorrelated, but certainly dependent.

Assumption D formalizes the usual situation of random errors in different experiments not
influencing each other, which will be the case unless the noise has an extremely long correlation
time extending from one experiment to the next, which may happen with 1/f noise.

We briefly consider why there is no inconsistency in the notion of a pure signal that is both
stochastic and reproducible. The stochasticity of the pure signal reflects the fact that there is a
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multitude of pure signal realizations that emanate from possible experimental measurements,
and all of these realizations collectively may be considered as the ensemble that defines the pure
signal stochastic processs. Different members of the ensemble would typically correspond to
different samples being examined, under different experimental conditions and with different
instrument settings. The reproducibility of the pure signal reflects the fact that any given
experimental measurement that can be done once, may be repeated again using the same
sample, same experimental conditions and same instrument settings; or stated formally, if a
member of the pure signal ensemble is invoked once, it may be invoked again. Accordingly,
the two observed signalsx0 andx1 in assumption C may refer to the same pure signals, which
is actually a stochastic process, without violating the bounds of what is possible in practice.
Although the concept of a Wiener filter formally implies the existence of an ensemble of signal
realizations, a meaningful Wiener filter may be derived from as few as one realization from
the signal ensemble, this being the adaptive Wiener filter described in section 4.

The best Wiener filter operates on both observed signalsx0 andx1 to yield the one filtered
signal

y(i) =
M∑

m=−M
fm(x0(i +m) + x1(i +m)). (21)

Sincex0 andx1 are statistically identical, by symmetry their Wiener filter coefficients are
identical, as enforced in (21).

Introduce the two derived observed stochastic processes

x+(ξ, i) ≡ observed sum signal

x−(ξ, i) ≡ observed difference signal

defined as

x+ ≡ x1 + x0 = 2s +n1 +n0 (22)

x− ≡ x1− x0 = n1− n0. (23)

In practice it is simple to compute these sum and difference signals from the directly observed
signalsx0 andx1, sox+ andx− are truly observed signals. The reproducible pure signal
Wiener filter operation (21) simplifies to

y(i) =
M∑

m=−M
fmx+(i +m). (24)

An analogous derivation to that of section 2, supplemented with assumptions C and D,
and definitions (22) and (23), gives thereproducible pure signal Wiener–Hopfequation:

M∑
n=−M

R++(m− n)fn = 1

2
(R++(m)− R−−(m)) m ∈ [−M,M]. (25)

As usual, the sum and difference correlation functions are defined as

R++(m− n) ≡ 〈x+(i +m)x+(i + n)〉 (26)

R−−(m) ≡ 〈x−(i)x−(i +m)〉. (27)

The reproducible pure signal Wiener–Hopf equation (25) has a unique solution for the filter
function. The elementary reproducible pure signal Wiener filter derived in this section is
extended to the case of non-stationary signals in section 5, and multiply reproduced pure
signals in section 6.
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Since the sum and difference correlation functions have even parity,

R++(−m) = R++(m)

R−−(−m) = R−−(m)
∀m (28)

it follows that the filter function also has even parity, just as for the general Wiener filter (17).
These symmetry properties allow the(2M + 1)× (2M + 1)Wiener–Hopf matrix equation (25)
to be reduced to a computationally preferable(M + 1)× (M + 1) matrix equation:

R++(m)f0 +
M∑
n=1

(R++(m− n) +R++(m + n))fn = 1

2
(R++(m)− R−−(m)) m ∈ [0,M].

(29)

The minimum mean-square error is

〈ε2〉min = 1

2

M∑
m=−M

R−−(m)fm. (30)

In the case of unbounded filter region of support (M →∞), the Wiener filter transfer function
is

Fk = 1

2

(S++(k)− S−−(k))
S++(k)

. (31)

The Wiener–Hopf equation (15) is applicable for general stationary signals or, more
precisely, those signals satisfying assumptions A and B. For stationary reproducible pure
signals, being those for which assumptions A to D are satisfied, the general Wiener–Hopf
equation (15) is exactly equivalent to the reproducible pure signal Wiener–Hopf equation (25).
The major practical advantage of (25) over (15) is that (25) makes reference to only observed
signalsx+ andx− through their correlation functionsR++ andR−−. Equation (25) contains
no reference to the unobservable pure signal, nor to noise, which is often unobserved, and
sometimes unobservable, as for signal-dependent or multiplicative noise. This is the central
result of the analysis: that in the reproducible pure signal case, the Wiener–Hopf equation is
exactly expressible in terms of only observable signal statistics. Hence, to the extent that the
correlation functions may be accurately estimated from practical signals, the reproducible pure
signal Wiener–Hopf equation (25) is inherently realizable without further assumption. This is
the great appeal of the reproducible pure signal Wiener filter.

The fact that the correlation functions in (25) can be experimentally measured obviates
the need to hypothesise analytic models for the correlation functions, whose free parameters
must then be estimated from the observed signals. This feature makes the reproducible pure
signal Wiener filternon-parametricand is very desirable for reasons of simplicity of design. If
experimental measurements of correlation functions yield superior accuracy to that available
from analytic models of signal statistics, the non-parametric Wiener filter is also more robust
than its parametric counterpart.

One further point that needs clarification is whether the reproducible pure signal Wiener
filter derived in this section requires twice as much time to implement as the general Wiener
filter of section 2, the former requiring the observation of two signalsx0 andx1, while the latter
only requiring observation of one signalx. A doubling of measurement time may be mandated
by the instrument design, but the way we conduct the filtering (21) implies that the integration
time for acquiringx0 andx1 individually need only be half that ofx for the unfiltered signals
to be essentially equivalent. Apart from the overheads associated with acquiring two signals
instead of one, the experiment exposure time is no longer for the reproducible pure signal case
than for the single observation case. Yet only in the double observation case are the undoubted
benefits of the reproducible pure signal Wiener filter available.
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4. Adaptive and non-adaptive Wiener filters

As stated in section 2, the preceding analysis strictly only pertains to stationary stochastic
processes, but is equally applicable to both ergodic and non-ergodic stochastic processes. In
this section we elaborate on the implications for Wiener filters of ergodicity or non-ergodicity
of stochastic processes. Although ergodic stochastic processes are conceptually simpler than
non-ergodic ones, the latter type often arise from the multitude of pure signals that are yielded
by experimental measurements (e.g. a stationary but non-ergodic ensemble can be as prosaic
as an ensemble of images of outside scenes, some being day-time scenes and others night-time
scenes). The implications for Wiener filters of non-stationarity of stochastic processes are
examined in section 5.

By modelling the pure signal as a stochastic process, which is represented by an ensemble
of realizations that may occur in experiments, the Wiener filter that we derive will be the
best (in terms of minimum square error) linear estimator on average for all realizations in
the ensemble, and not necessarily the best linear estimator for any individual member of the
ensemble. Specifically, for a non-ergodic ensemble, each individual member of the ensemble
in general will have its own individual optimum linear estimator that differs from the Wiener
filter corresponding to the whole ensemble, the latter being the single linear estimator that is
best on average over all members of the ensemble. Conversely, for an ergodic ensemble in
which ensemble averages such as correlation functions are equivalent to the corresponding
time averages along any individual member of the ensemble, the best linear estimator for any
individual member of the ensemble is identical to the single best linear estimator on average
for the whole pure signal ensemble, which is the Wiener filter resulting from the foregoing
analysis.

In some practical circumstances, especially when the rate of acquiring signals is high
or when real-time filtering is required, it is important to minimize the computational effort
devoted to evaluating the Wiener filter function. Situations such as these mandate that a
single Wiener filter be applicable to the complete pure signal ensemble, in which case sum
and difference correlation functions should be estimated by appropriate ensemble averages
over many different realizations of the observed sum and difference signalsx+ andx−. The
separate realizations are obtained from separate experimental measurements with a diversity of
samples being investigated, under a diversity of experimental conditions, and with a diversity of
instrument settings. Following this prescription yields the single Wiener filter that is optimal
on average for the totality of members of the ensemble. However, for a non-ergodic pure
signal ensemble the derived Wiener filter will not necessarily be the optimal linear estimator
for individual members of the ensemble. Only for an ergodic pure signal ensemble is the
Wiener filter also the optimal linear estimator for individual members of the ensemble. This
single Wiener filter for the overall pure signal ensemble is in a sense ‘non-adaptive’, because
it does not adapt to the peculiarities of individual members of the ensemble.

It is always possible to derive the optimal linear estimator for a specific realization in
the pure signal ensemble by notionally ‘constructing’ an ergodic pure signal ensemble whose
ensemble averages (specifically correlations) are precisely the corresponding time averages of
the pure signal realization whose estimate is being sought. Such a notional pure signal ensemble
may be as simple as being composed of individual members that are distinct arbitrary time
displacements of the true pure signal realization whose estimate is being sought. The Wiener
filter derived from the preceding analysis conducted on this notional pure signal ensemble
is not only the optimal linear estimator on average for all members of the ensemble, but by
virtue of the ergodicity of the ensemble, the Wiener filter is also the optimal linear estimator
of every individual member of the ensemble, and by construction this includes the specific
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realization of the actual pure signal ensemble whose estimate is being sought. Given that the
notional pure signal ensemble is ergodic, its ensemble averages (specifically correlations) are
equal to the corresponding time averages for any individual member of the notional ensemble.
However, one member of this notional ensemble is the actual pure signal realization that arose
in an experiment and was manifested in the corresponding members of the observed sum
and difference signal ensembles that were measured. Consequently, time averages of a single
realization of both the observed sum and observed difference signals are sufficient to derive the
Wiener filter for the notional pure signal ensemble, which is also the optimal linear estimator
of the specific realization in the actual pure signal ensemble whose estimate is being sought.

Thus we have established a formal procedure for deriving the optimal linear estimator
for an individual realization of the actual pure signal ensemble. Of course, every distinct
realization of the actual pure signal ensemble requires repetition of this procedure to derive
a new optimal linear estimator. So there is a computational complexity penalty for seeking
separate Wiener filters customized to each individual realization of the pure signal ensemble, as
opposed to the single Wiener filter that is optimal on average over all members of the pure signal
ensemble. These separate Wiener filters for individual members of the pure signal ensemble
are in a sense ‘adaptive’, because each filter adapts to the peculiarities of its corresponding
member of the ensemble.

For definiteness, the preceding discussion is in terms of only the pure signal ensemble,
but exactly the same implications hold if the noise ensemble is substituted for the pure signal
ensemble in the argument. Unlike the pure signal, signal-independent noise is often ergodic,
and it is only the non-ergodicity of the pure signal that imposes the distinction between adaptive
and non-adaptive Wiener filters that has been identified here. However, signal-dependent
noise and multiplicative noise (5) necessarily will also be non-ergodic if the pure signal is
non-ergodic, which is often the case.

An alternative but equivalent interpretation of adaptive Wiener filters is that they are a
means of applying the concept of statistically optimal linear estimation to a deterministic
signal, which is generalized to one realization of a notional ergodic stochastic process by the
type of reasoning described in this discussion. The time invariant property imposed on Wiener
filters implies that the derived filter is the linear estimator of the pure signal that is optimal on
average over all times, rather than a time-varying instantaneously optimal linear estimator, but
is otherwise customized to the specific characteristics of the deterministic signal being filtered.

5. Generalized correlations for non-stationary signals

As is conventional for Wiener filters, the preceding analysis has assumed stationary signal
ensembles. However, ensembles of signals emanating from measuring instruments are not
necessarily stationary. The most obvious non-stationarity—that otherwise stationary signals
have a finite domain—usually poses no difficulty other than close to the boundaries of the
domain, where the local inappropriateness of the Wiener filter is tolerated. A more subtle form
of non-stationarity in instrument signal ensembles arises because the human operator often
adjusts the instrument to put the most ‘interesting’ part of the signal towards the middle of the
signal domain; a practice that is not conducive to attaining stationarity. This behaviour may
produce an intrinsic non-stationarity in the instrument signal ensemble that should be taken
into account in the Wiener filter design. However, the stationarity assumption is fundamental
to the Wiener filter concept. We resolve this dilemma by invoking a generalization to the
notion of stationarity that is compatible with both non-stationary signal ensembles and Wiener
filter analysis. In effect, the strategy is to time integrate ‘out’ the non-stationarity and then
formulate an average Wiener filter around the ensuing average signal statistics.
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We demonstrate the approach only for the general Wiener filter of section 2, but the
reasoning is entirely analogous for the reproducible pure signal Wiener filter that we introduced
in section 3. The following analysis explicitly assumes a signal domaini ∈ [−I, I ], but it is
implied that the signal is actually measured throughout the intervali ∈ [−I −M, I +M]. In
practice, the signal measurement interval (i.e.I +M) and filter region of support (i.e.M) are
chosen, thereby specifying the signal domain (i.e.I ).

Integrate the instantaneous square error stochastic processε2(i) (7) over the signal domain
to obtain the time-averaged square error random variable

ε2 ≡ 1

(2I + 1)

I∑
i=−I

(y(i)− s(i))2. (32)

The mean time-averaged square error is the deterministic number〈
ε2
〉
≡
〈

1

(2I + 1)

I∑
i=−I

(y(i)− s(i))2
〉

(33)

which, on substitution of (6), is expressed as an explicit function of the filter elements:〈
ε2
〉
(fm) ≡

〈
1

(2I + 1)

I∑
i=−I

( M∑
m=−M

fmx(i +m)− s(i)
)2〉
. (34)

The Wiener filter is the linear (time invariant) minimum mean (time-averaged) square error
filter, obtained as the solution of

∂
〈
ε2
〉

∂fm
= 0 m ∈ [−M,M] (35)

which expands into the non-stationary signal Wiener–Hopf equation:

M∑
n=−M

(
1

(2I + 1)

I∑
i=−I
〈x(i +m)x(i + n)〉

)
fn

= 1

(2I + 1)

I∑
i=−I
〈s(i)s(i +m)〉 m ∈ [−M,M]. (36)

Equation (36) has a unique solution for the filter function.
To make the Wiener filter more computationally tractable, we make two further very

reasonable assumptions about pure signals and noise:

Assumption E.The pure signal ensembles is ‘stationary’ sufficiently close to the lower and
upper bounds of the signal domaini ∈ [−I, I ], which is precisely stated as

〈s(−I +m)s(−I + n)〉 = 〈s(I +m)s(I + n)〉
= function of(n−m) m, n ∈ [−M,M].

Assumption F.The noise ensemblen satisfies the same boundary stationarity condition ass,
that is,

〈n(−I +m)n(−I + n)〉 = 〈n(I +m)n(I + n)〉
= function of(n−m) m, n ∈ [−M,M].

For the multiplicative noise model, if the zero meann′ is independent ofs, and satisfies this
assumption, then the effective additive noisen (5) also satisfies this assumption.

Assumptions E and F are formal definitions of ‘generalized’ stationarity.
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Note that these boundary stationarity assumptions are conditions on the average properties
of complete ensembles; there is no requirement for individual realizations of the ensembles
to somehow reflect these conditions. Stationary stochastic processes definitely satisfy
these conditions. So do stochastic processes that are very non-stationary within interval
i ∈ (−I +M, I −M), but whose sample signals all have the same constant value (e.g. zero)
everywhere outside this interval. Thus the type of non-stationarity that we have identified as
being typical of instrument signal ensembles is compatible with assumptions E and F. Many
other non-stationary stochastic processes also satisfy these conditions, so these conditions may
justifiably be seen as generalizations of the stationarity condition that is conventionally imposed
in Wiener filter derivations. In fact, any finite domain non-stationary stochastic process can
be made compatible with assumptions E and F by zero padding sufficiently far on either side
of the original domain and appropriately redefining the signal domain.

Quite generally we may define the pure signal, noise and observed signal generalized
correlation functions:

Rss(m) ≡
〈

1

(2I + 1)

I∑
i=−I

s(i)s(i +m)

〉

= 1

(2I + 1)

I∑
i=−I
〈s(i)s(i +m)〉 (37)

Rnn(m) ≡
〈

1

(2I + 1)

I∑
i=−I

n(i)n(i +m)

〉

= 1

(2I + 1)

I∑
i=−I
〈n(i)n(i +m)〉 (38)

Rxx(m, n) ≡
〈

1

(2I + 1)

I∑
i=−I

x(i +m)x(i + n)

〉

= 1

(2I + 1)

I∑
i=−I
〈x(i +m)x(i + n)〉. (39)

By appealing to assumptions A, B, E and F we derive the relations

Rxx(m, n) = Rxx(m− n) = Rss(m− n) +Rnn(m− n) m, n ∈ [−M,M] (40)

just as for stationary stochastic processes (14).
The conventional definitions of correlations (12)–(14) omit the summation overi and the

associated 1/(2I + 1) factor, which would give correlation functions that are independent
of time index i only for stationary stochastic processes. Since we admit non-stationary
stochastic processes, we must explicitly include thei summation (i.e. time integration) to
remove thei dependence (i.e. time dependence) of the correlation functions. Even with this
i summation, the correlation functions are in general functions of the ordered pair of time
displacements(m, n). Assumptions E and F allow ani summation over a finite domain to give
correlation functions that are functions of only the difference of time displacements(m− n),
just as for stationary stochastic processes. Correlations that are functions of only the difference
of time displacements are estimated with better accuracy and less computational complexity
than those that are functions of both time displacements separately.

Signals are observed for only finite time intervals in practical situations and it is only
through assumptions E and F that we can make the same simplifications that are made under the
more restrictive assumption of stationarity. Thei summations in our definitions of generalized
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correlations, combined with assumptions E and F, effectively allow our analysis to formally
proceed as if the stochastic processes were stationary, even though they are not necessarily
so. In essence, we derive the one stationary signal Wiener filter that is on average best suited
to the actual non-stationary signals. A much more complicated method of Wiener filtering
non-stationary signals is to derive at each time sample the Wiener filter that is best suited to
the instantaneous signal statistics, effectively yielding a time variant filter [19].

Substituting (37), (39) and (40) into (36) yields exactly the stationary signal Wiener–Hopf
equation (15) of section 2, with correlations interpreted as the generalized correlations that
we have introduced in this section. The remainder of the analysis proceeds exactly as in
section 2, since assumptions E and F ensure the same symmetry properties (16) and (17) as in
section 2.

Assumptions E and F maintain their validity for an unbounded filter region of support
(M → ∞) only for stationary stochastic processes, so the frequency domain form of the
Wiener filter (20) only exists for stationary signals. We now see that the Wiener filter is
generalizable to some non-stationary signals only when it is expressed in the time domain, but
not the more common frequency domain.

The reproducible pure signal Wiener filter of section 3 is generalizable to non-stationary
signals satisfying assumptions E and F in an analogous way to that revealed in this section.
Once again, the same reproducible pure signal Wiener–Hopf equation (25) is obtained, where
now the correlations are interpreted as generalized correlations, analogous to (39).

6. Statistically good observed signal correlation estimates for multiply reproduced pure
signals

The reproducible pure signal Wiener filter synthesis of section 3 was predicated upon the
existence of a single pure signal reproduction in addition to the original pure signal occurrence.
We denote the ensuing filter as corresponding to pure signal ‘multiplicity’ or ‘degeneracy’
D = 2 (i.e. original plus one reproduction).D = 2 is the simplest possible reproducible
pure signal Wiener filter and we now generalize to arbitrarily higher pure signal multiplicities
(D > 2; original plus more than one reproduction). In principle, this problem is trivial, since
the Wiener–Hopf equation (25) is still exactly correct for higher multiplicities, wherex0 and
x1 are any two of the observed signals.

To make the problem theoretically interesting and more practically relevant, we assume
that correlations are estimated with a degree of statistical uncertainty from a given finite amount
of observed data (i.e. finite number of distinct pure signals multiplied by finite multiplicity
multiplied by finite signal domain). This is how correlations are obtained in practice, and
we assume that there is a practical need to reduce the amount of statistical uncertainty in
correlation estimates. Accordingly we seek a formally correct multiply reproduced pure
signal Wiener filter that is evaluated from statistically good observed signal correlation
estimates.

Assumption C of section 3 generalizes by associatingD statistically identical noise signals
nk andD observed signalsxk with a single reproducible pure signals (it is now convenient
for k to start counting up from 1):

xk ≡ s +nk k ∈ [1,D]. (41)

Assumption D generalizes to expressing the mutual orthogonality of all noise signal pairs:

〈nk(i)nl(j )〉 = 〈nk(i)〉〈nl(j )〉 = 0 ∀ i, j, k, l with k 6= l. (42)
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The best multiply reproduced pure signal Wiener filter operates on the ‘observed sum signal’

x+ ≡
D∑
j=1

xj = Ds +
D∑
j=1

nj (43)

by the standard convolution operation (24).x+ in (43) is the arbitraryD generalization of the
D = 2 observed sum signal in (22).x+ is characterized by the sum correlation functionR++

(26) for stationary signals or an analogue of the observed signal generalized correlation (39) for
non-stationary ensembles that conform to the generalized stationarity criteria of assumptions E
and F. Using assumption B, (42), and the statistical identicality of all noise signals, the sum
correlation becomes

R++(m) = D2Rss(m) +DRnn(m). (44)

Statistical estimators ofR++(m) at every argument valuem are constructed from
observations ofx+(i) at all samplesi. Details of the several possible estimators are an intricate
matter that we will not address here. Assume momentarily, for the sake of argument, thats
is a deterministic signal rather than a stochastic process; effectively we are only interested in
a single realizations from the ensembles. Then the standard deviation of any estimator of
R++(m) increases asO(D3/2) asD → ∞, while R++(m) (44) itself increases asO(D2) as
D→∞, yielding the result

R++(m) estimator: relative uncertainty= O
(

1

D1/2

)
asD→∞. (45)

In practice, only small values ofDwould be encountered, so the achievable decline of estimator
relative uncertainty with increasingD does not strictly conform to (45). Nevertheless, (45)
gives a rough measure of the benefit of increasing pure signal multiplicity for the precision of
sum correlation estimates.

Although the observed sum signal extends trivially from theD = 2 case (22) to arbitraryD
(43), extension of the observed difference signal from theD = 2 case (23) to arbitraryD is
a more complicated matter. We begin with a prescription for the construction of a coefficient
matrix that will be needed later in (52). Starting from the basis ofRD defined by the rows of
theD ×D matrix

1 1 1 1 · · · 1 1

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 0 1

 (46)

use the Gram–Schmidt process of linear algebra [34] to derive theD ×D orthogonal matrix

9D ≡
(
D − 1

D

)1/2


1/(D − 1)1/2 1/(D − 1)1/2 · · · 1/(D − 1)1/2

ψ21 ψ22 · · · ψ2D

...
...

...

ψD1 ψD2 · · · ψDD

 . (47)

9D matrices are effortlessly and exactly computed by symbolic mathematics packages [35],
but for reference purposes we quote9D for multiplicitiesD = 3–8 in the appendix. The
important features of matrix (46) are that the top row elements are all equal and that its rows
in total constitute any basis ofRD. Any change in the starting basis that complies with these
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requirements produces another equally suitable starting basis, which will orthogonalize to
different but equally suitable9D matrix elementsψij .

Denoting the transpose matrix by a T superscript,9D (47) has the property

9−1
D = 9T

D (48)

being an orthogonal matrix. More important for our purposes is the orthonormality of the row
vectors of9D:

D∑
j=1

ψ2
kj = D/(D − 1) k ∈ [2,D] (49)

D∑
j=1

ψkj = 0 k ∈ [2,D] (50)

D∑
j=1

ψkjψlj = 0 k 6= l ∈ [2,D]. (51)

Equation (50) expresses the orthogonality of the first row of9D with respect to all other rows.
There areD − 1 statistically beneficial ‘observed compound signals’x′k, given by linear

combinations of directly observed signalsxj with coefficients specified by rows 2 toD of9D
(47):

x′k ≡
D∑
j=1

ψkjxj =
D∑
j=1

ψkjnj k ∈ [2,D]. (52)

The equality in (52) follows from assumption (41) and orthogonality relation (50). Observed
compound signals are arbitrary multiplicityD generalizations of the observed difference
signal (23) that arises forD = 2.

For stationary signals, observed compound signals (52) are characterized by conventional
compound autocorrelation functions

R′kk(m) ≡ 〈x′k(i)x′k(i +m)〉 k ∈ [2,D] (53)

and, by virtue of assumption (42) and orthogonality relation (51), vanishing compound cross-
correlations

〈x′k(i)x′l(i +m)〉 = 0 ∀m and k 6= l ∈ [2,D]. (54)

Non-stationary signals that conform to the generalized stationarity criteria of assumptions E
and F are characterized by generalized compound autocorrelations that are analogous to
(39) and vanishing generalized compound cross-correlations. Substituting (52) into (53),
expanding, simplifying by (42) and (49) and expressing the stochastic equivalence of all noise
signalsnk by endowing them with a common noise correlationRnn(m) (13), gives

R′kk(m) =
D

(D − 1)
Rnn(m) k ∈ [2,D]. (55)

Note that all observed compound signals have identical correlations.
Statistical estimators of each compound correlation function (53) at every argument

value are constructed from the corresponding observed compound signal. From (55), the
superposition of all compound signal correlations has the property

D∑
k=2

R′kk(m) = DRnn(m). (56)
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As the statistical estimator of superposition
∑

k R
′
kk(m), use the sum of estimators of the

individual R′kk(m), so that the superposition estimator has a mean value that is(D − 1)
times greater than the individual summand estimators. To obtain a similarly simple relation
between standard deviations of individual summand and superposition estimators, we restrict
assumption D of section 3, which generalizes to (42) for arbitrarily many pure signal
reproductions, as follows.

Assumption D′. Noise signalsnk accompanying different occurrences of the same pure signal
s are pure signal additive, pure signal independent, marginally normally (i.e. Gaussian)
distributed and mutually independent.

Assumption D′ ensures that thex′k are mutually independent and therefore statistical
estimators ofR′kk(m) are also mutually independent for differentk, so that the estimator of∑

k R
′
kk(m) has a standard deviation that is(D−1)1/2 times greater than theR′kk(m) estimators.

Consequently, the relative uncertainty of the estimator of superposition (56) declines with
increasing multiplicityD as

D∑
k=2

R′kk(m) estimator: relative uncertainty= O
(

1

(D − 1)1/2

)
∀D. (57)

We shall see in (58) that estimates ofR++(m) and
∑

k R
′
kk(m) suffice to specify the Wiener

filter, and from (45) and (57) respectively, estimators of both quantities approximately decline
asO(1/D1/2)with increasing pure signal multiplicityD. This behaviour quantifies the benefits
of largerD for the attainable precision of Wiener filter specification. Additional to this benefit
is the fact that the unfiltered signal, being the observed sum signal (43), has the noise power
diminished by a factor ofD relative to the pure signal power, compared with the individual
observed signals, as expressed by the comparison between (44) and (14). Accordingly, there
are demonstrable benefits for the filtered signal quality accruing from increasing pure signal
multiplicity. However, the ultimate decision on pure signal multiplicity will often be dictated
more by practical considerations than theoretical principles.

A derivation analogous to that in section 2, supplemented by (41), (42), (44) and (56),
yields themultiply reproduced pure signal Wiener–Hopfequation (cf (15), (25)):
M∑

n=−M
R++(m− n)fn = 1

D

(
R++(m)−

D∑
k=2

R′kk(m)
)

m ∈ [−M,M]. (58)

Filtered signal minimum mean-square error is (cf (19), (30))

〈ε2〉min = 1

D

M∑
m=−M

D∑
k=2

R′kk(m)fm. (59)

For stationary signals and an unbounded filter region of support (M →∞), the filter transfer
function is (cf (20), (31))

Fk = 1

D

(
S++(k)−

∑D
l=2 S

′
ll (k)

)
S++(k)

. (60)
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Appendix. ΨD,D = 3–8
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